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Outline

Purpose of this lesson

The objective of this lesson is to describe CISIA simulator and its element.
At the end the MICIE reference scenario is described.

==ROMA

%

N[VERSFFA DEGLI STUDI
3/35

C. Foglietta CISIA



Outline

Reading Materials

The State of the Art in Critical Infrastructure Protection: a Framework for
Convergence, by Ebrahim Bagheri and Ali A. Ghorbani, 2007

An agent based simulator for critical interdependent infrastructures., by
Panzieri, S., Setola, R., Ulivi, G., 2004.

An approach to model complex interdependent infrastructures., by
Panzieri, S., Setola, R., Ulivi, G., 2005.
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Introduction

Complex Adaptive Systems
Complex Adaptive System (CAS) Model
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Introduction

Complex Adaptive Systems

The whole model is obtained considering a population of interacting
agents, where an agent is an entity with a location, capabilities and
memory.

The agent location defines where it is in a physical space (geographic
region or abstract space). What the agent can perform is defined by its
capabilities. An agent can modify its internal data representation
(perception capability), it can modify its environment (behaviours
capability), it can adapt itself to environment's changes (intelligent

reaction capability), it can share knowledge, information and common
strategies with other entities (cooperation capability), and it can execute
actions without external intervention (autonomy capability). Finally, the
experience history (for example, overuse or aging) and data defining the
agent state represent agent’s memory. _
Interaction among them produces the “emergence” of behaviourg_t__= A

not predictable by the knowledge of any single agent. ONIVERSITA DEGL1 STUDY
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Introduction

Agent-Based Modelling

ABM is obtained interconnecting agents: i.e., independent systems that
autonomously elaborate information and resources in order to define their
outputs; the latter became inputs for other agents, and so on.

This approach is particularly useful for situations, as is the case of
infrastructure interdependencies, with sparse or non-existent macroscale
information; ABM is able to use the rich sources of micro-level data to
develop interaction forecasts.

One disadvantage of these simulation models is that the complexity of the
computer programs tends to obscure the underlying assumptions and the
inevitable subjective inputs. An other disadvantage is the difficulty to
acquire detailed information about each single infrastructure. This task
appears, by its own, a difficult challenge, because this kind of information
is considered very sensible by infrastructure stakeholders due to the _
relevance for their business. The consequence of a disclosure of Eese A
of information could have a bad impact on the markets. ST

C. Foglietta CISIA 7/35



CISIA

Critical Infrastructure Simulation by
Interdependent Agents |

CISIA main aims are:
@ To evaluate the short-term effects of one or more faults;
@ To help analysts in what-if analysis;

@ To single out the critical elements (i.e., those whose faults produce
maximum impact).

CISIA models the behavior of an infrastructure (or a set of interacting
infrastructures) through a set of non-linear interdependent agents. Each of
the agents represents a macro component of the modeled system.
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CISIA

Critical Infrastructure Simulation by
Interdependent Agents Il

This description consists of only the specification of the agents’ operative
level (agents stamina), requirements (agents’' needs), and faults. To model
the interaction of the agents (provide mutual requirements or disseminate
failure), three types of matrices namely Operative Level Incidence Matrix,
Requirement Incidence Matrix, and Fault Incidence Matrices are devised.

Fault incidence matrices are further refined to allow the analysis of
different types of failure propagation (geographical, physical, and cyber).
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CISIA Agent Representation

Agent Representation |

In particular the agents in the simulator interact by three quantities:

e Operative Level (OP): the capability of the system to perform its
required job. It is a measure of the potential production/service, e.g.,
for an energy production plant OL=100% does not means that it is
providing the maximum power, but that it could, if required.

o Requirements (R): what the system needs to reach OL=100

e Fault (F): it is a structured variable composed by two components:
F.value is a boolean value that, when true, forces OL zero and cannot
be reverted to false, while F.type is a list of strings representing the
different types of failures which affected the agent.
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CISIA Agent Representation

Agent Representation I
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CISIA Agent Representation

Agent Inputs

Indeed agents are connected together when they exhibit some sort of
dependence. In particular, each agent has three inputs:

@ Induced faults (IN.F): faults propagated to it from its
neighbourhoods, described in terms of type and magnitude;

@ Requirements (IN.R): amount of resources requested by other
agents;

© Operative Level (IN.OL) ): the operative level of those objects
whose resources are used in it,
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CISIA Agent Representation

Agent Outputs

Each agent has also three outputs:
O Propagated faults (OUT:F): faults propagated from the object to
its neighbourhoods;
@ Output Requirements (OUT:R): amount of resources requested to
other objects;;
© Output Operative Level (OUT:0L): the OL of the object itself.
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CISIA Agent Representation

Internal Behaviour

One is associated to the service that the agent provides (Element
Dynamic): input requirements (IN:R) coming from subsequent agents,
merged with the resources available from foregoing ones (IN:OL) and the
current operative level (OL), define both the output operative level
(OUT:OL) and the level of resources it needs (OUT:R).

Moreover, OL depends on the level of failure of the object (OL is set to
zero when F is 100%). The second dynamic (Failure dynamic) is a mix of
propagation (from IN:F to OUT:F ) and an internally generate condition
related to agent's memory.
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CISIA Agents’ Dependencies

Dependencies Representation |

An Operative Level Incidence Matrix (mo;); where the i-th row represents
the set of nodes that need the output of the /-th node to perform their
activities;

A Requirement Incidence Matrix (mg); where the i-th row represents the
set of nodes providing the needed resources to /-th agent. Note that even
thought generally mp;, = m,g we did not exploit this feature in order to
guarantee a more general formulation;

Three Fault Incidence Matrices (FIMs); where the presence of a 1 in the
ij-th position means that a fault may be propagated from the /i-th node to
the j-th one.
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CISIA Agents’ Dependencies

Dependencies Representation Il

Physical FIM (mpg) that describes faults propagation via the physical
linkages (i.e., those related to exchange of physical quantities) between the
input and the output of two agents. This kind of fault may be generated
or may afflict any kind of agent.

Geographical FIM (mgr) emphasizes that faults may propagate among
nodes that are in close spatial proximity. Events such as an explosion or
fire could create correlated disturbances to all the systems localised in the
spatial neighbour. The matrix mgr exhibit a pattern of 1s characterized
by isolated clusters. Inside each cluster, generally, we have a fully
connected structure.
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CISIA Agents’ Dependencies

Dependencies Representation Il

Cyber FIM (mc¢g), this matrix describes the propagation of faults
associated with the cyberspace (e.g., virus, worm, etc.). Only a subset of
the agents may be affected by this class of fault, i.e., computers and
apparatus directly connected to the cyberspace. Obviously, any physical
failure is propagated, instead, via mpr or mgr. Cyber-dependency defines,
at first approximation, a unicum giant cluster fully connected. This
characteristic emphasizes that the cyber-dependency is a global properties,
i.e., a system that uses the cyberspace is directly connected with any other
system that uses the virtual space.
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Simulation Environment

Simulation Steps |

Each simulation step is driven by the clock, a routine that synchronizes the
computation steps of the entities with the message exchanging phase; at
each step entities generate their resources and failures and such quantities
are routed to other elements according to the multi-scale, multi-graph
topology of the framework.

Moreover each timed cycle begins with a set of instantaneous cycles, in
order to depict real-time dependencies; in fact it is not possible that an
element within a power grid has to wait some cycles to receive power, such
a resource has to be instantly forwarded (and the lack of such a resource
has to be instantly noticed). Therefore at the beginning of every timed
cycle many instant cycles are performed, until the overall system reaches a

ROMA
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Simulation Environment

Simulation Environment

Simulation Environment

Entity Pool

Entity Entity Entity Entity
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Simulation Environment

Transmission Sub System

The TSS is devoted to manage the communication between the entities.
The TSS stores the matrices which describe the different types of
adjacency between the entities, as exposed above. Entities communicate
via message exchanging, where each message contains data about the type
and the denormalized quantity of carried resource (or fault), the
normalizing factor, unit of measurement and the sender port identification
(ID). When the TSS receives the signal from the simulation clock, it
collects the outgoing messages from all the entities and delivers each
message to the neighbours of the sender entity, according to the
adjacencies described in the matrix associated with the type of the carried
quantity. If a link between two adjacent entities is characterized by
attenuation or delay factors, TSS provides to delay the delivery of the
messages routed over that link and to suitable scale the carried ﬁ&@MA
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Simulation Environment

Entity Pool

The Entity Pool (EP) synchronizes the execution steps of the entities and
to manage their persistence. EP stores the entities inside a multi indexed
vector, keeping also the map between the communication ports and the
correspondent entities. When it receives a signal from the simulation clock
it keeps the execution control, and spanning the vector which contains the
entities, launches the atomistic simulation step on each entity. Once all
the entities have run their simulation steps, gives back the control to the
clock. After this step the EP waits for the execution of the communication
phase, exploited by the TSS. During this phase it works as a mapping
interface between the calls of the TSS and the communication routines of
the entities.
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Simulation Environment

Triangular Fuzzy Numbers

Moreover, the interdependency is modelled by means of multiple adjacency
matrices, resulting in a multi-graph. Finally, each quantity is modelled by
means of Triangular Fuzzy Numbers, allowing to encode vague information
and providing an estimation of the certainty of the simulation/prediction.
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MICIE - COCKPITCI Scenario
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration |
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration |l
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration Il
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration 1V
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration V
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MICIE - COCKPITCI Scenario

Fault Isolation and System
Reconfiguration VI
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MICIE - COCKPITCI Scenario

SCADA Network
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MICIE - COCKPITCI Scenario

Telecommunication Network
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MICIE - COCKPITCI Scenario

Telecommunication Reconfiguration
Procedure |
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MICIE - COCKPITCI Scenario

Telecommunication Reconfiguration
Procedure |l
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MICIE - COCKPITCI Scenario

Scenarios
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Questions?
C. Foglietta

MICIE - COCKPITCI Scenario
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